Phytochemical Composition and Antioxidant Properties of Avocado (Persea americana) Seed Extract from Aceh, Indonesia: Implications for Antihyperlipidemic Use in Postmenopausal Women

Authors

  • Nurbaiti Nurbaiti Department of Midwifery, Poltekkes Kemenkes, Aceh, Indonesia
  • Yulia Fitri Department of Midwifery, Poltekkes Kemenkes, Aceh, Indonesia
  • Fitriani Fitriani Department of Midwifery, Poltekkes Kemenkes, Aceh, Indonesia
  • Wardati Humaira Politeknik Kesehatan Kementerian Kesehatan Medan, Indonesia
  • Cecep Triwibowo Politeknik Kesehatan Kementerian Kesehatan Medan, Indonesia

DOI:

https://doi.org/10.60084/mp.v3i1.228

Keywords:

Persea americana , ADMET analysis , Undec-10-ynoic acid, tetradecyl ester, Antihyperlipidemic

Abstract

Avocado (Persea americana) is widely recognized for its high antioxidant capacity. Its rich phytochemical composition is crucial in mitigating oxidative stress and managing chronic conditions such as cardiovascular disease and hyperlipidemia. This study aimed to investigate the phytochemical profile, antioxidant activity, and antihyperlipidemic potential of ethanol extracts derived from avocado seeds. Phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis were conducted to identify key chemical constituents, while antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In addition, in-silico techniques were employed to evaluate the antihyperlipidemic potential of the bioactive compounds. Phytochemical analysis revealed a variety of bioactive compounds, including volatile compounds, steroids, and fatty acids, contributing to the extract's biological activity. The extract demonstrated strong antioxidant capacity, with an IC50 value of 20.83 ppm, indicating potent free radical scavenging ability. GC-MS analysis identified significant compounds such as Undec-10-ynoic acid, tetradecyl ester, and 9,12,15-Octadecatrienoic acid, 2-(acetyloxy)-1-[(acetyloxy)methyl] ethyl ester, which were further analyzed through molecular docking studies. These studies indicated their potential as inhibitors of hyperlipidemia-associated proteins, with binding energy values exceeding -6 kcal/mol. Moreover, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis demonstrated favorable pharmacokinetic profiles, including good absorption and low toxicity, positioning these compounds as promising candidates for therapeutic development. The findings of this study underscore the potential of avocado seed extract as a natural source of antioxidants and antihyperlipidemic agents. The identified bioactive compounds offer a promising therapeutic strategy for managing oxidative stress and lipid disorders, particularly in populations at heightened risk, such as postmenopausal women.

Downloads

Download data is not yet available.

References

  1. Bešlo, D., Golubić, N., Rastija, V., Agić, D., Karnaš, M., Šubarić, D., and Lučić, B. (2023). Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals, Antioxidants, Vol. 12, No. 6, 1141. doi:10.3390/antiox12061141.
  2. Malino, A. P., Kepel, B. J., Budiarso, F. D. H., Fatimawali, F., Manampiring, A. E., and Bodhi, W. (2024). In Vitro Test of Antioxidant Activity of Leilem Leaf Ethanol Extract (Clerodendrum minahassae) Using DPPH and FRAP Methods, Heca Journal of Applied Sciences, Vol. 2, No. 1, 27–34. doi:10.60084/hjas.v2i1.135.
  3. Sari, N. W. S., Tallei, T. E., and Kolondam, B. J. (2023). Benefits of Green Tea Polyphenols for Kidney Health: A Literature Review, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 2, 60–70. doi:10.61975/gjset.v1i2.13.
  4. Zehiroglu, C., and Ozturk Sarikaya, S. B. (2019). The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies, Journal of Food Science and Technology, Vol. 56, No. 11, 4757–4774. doi:10.1007/s13197-019-03952-x.
  5. Suhendra, R., Husdayanti, N., Suryadi, S., Juliwardi, I., Sanusi, S., Ridho, A., Ardiansyah, M., Murhaban, M., and Ikhsan, I. (2023). Cardiovascular Disease Prediction Using Gradient Boosting Classifier, Infolitika Journal of Data Science, Vol. 1, No. 2, 56–62. doi:10.60084/ijds.v1i2.131.
  6. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Machine Learning Approach to Predict AXL Kinase Inhibitor Activity for Cancer Drug Discovery Using XGBoost and Bayesian Optimization, Journal of Soft Computing and Data Mining, Vol. 5, No. 1, 46–56.
  7. Dewi, R. S., Sandhiutami, N. M. D., Sarsono, D. A., and Cuinita, D. P. (2023). Antioxidants and Antihyperlipidemia Test of Ethanol Extract of Indonesian Plant Sambang Getih Leaves (Hemigraphis Bicolor Boerl.) In Hyperlipidemia Mice, Open Access Macedonian Journal of Medical Sciences, Vol. 11, No. A, 92–98. doi:10.3889/oamjms.2023.10962.
  8. Elliot, S. J., Catanuto, P., Pereira-Simon, S., Xia, X., Pastar, I., Thaller, S., Head, C. R., Stojadinovic, O., Tomic-Canic, M., and Glassberg, M. K. (2022). Catalase, a Therapeutic Target in the Reversal of Estrogen-Mediated Aging, Molecular Therapy, Vol. 30, No. 2, 947–962. doi:10.1016/j.ymthe.2021.06.020.
  9. Lou, Z., Huang, Y., Lan, Y., Li, C., Chu, K., Chen, P., Xu, W., Ma, L., and Zhou, J. (2023). Relationship between Years since Menopause and Lipid Variation in Postmenopausal Women: A Cross-Sectional Study, Medicine, Vol. 102, No. 2, e32684. doi:10.1097/MD.0000000000032684.
  10. Mortensen, M. B., Dzaye, O., Bøtker, H. E., Jensen, J. M., Maeng, M., Bentzon, J. F., Kanstrup, H., Sørensen, H. T., Leipsic, J., Blankstein, R., Nasir, K., Blaha, M. J., and Nørgaard, B. L. (2023). Low-Density Lipoprotein Cholesterol Is Predominantly Associated With Atherosclerotic Cardiovascular Disease Events in Patients With Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry, Circulation, Vol. 147, No. 14, 1053–1063. doi:10.1161/CIRCULATIONAHA.122.061010.
  11. Kupnik, K., Primožič, M., Kokol, V., Knez, Ž., and Leitgeb, M. (2023). Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds, Plants, Vol. 12, No. 5, 1201. doi:10.3390/plants12051201.
  12. Soemardji, A. A., Umar, M. H., and Fidrianny, I. (2016). Lipid Profile and Platelet Aggregation of Ethanolic Seed Extract of Avocado (Persea americana Mill.) in Hyperlipidemic Male Wistar Rat, Asian Journal of Pharmaceutical and Clinical Research, 143–147.
  13. Yasir, M., Das, S., and Kharya, M. (2010). The Phytochemical and Pharmacological Profile of Persea americana Mill, Pharmacognosy Reviews, Vol. 4, No. 7, 77. doi:10.4103/0973-7847.65332.
  14. Rahman, N., Sabang, S. M., Abdullah, R., and Bohari, B. (2022). Antioxidant Properties of the Methanolic Extract of Avocado Fruit Peel (Persea americana Mill.) from Indonesia, Journal of Advanced Pharmaceutical Technology & Research, Vol. 13, No. 3, 166–170. doi:10.4103/japtr.japtr_22_22.
  15. Segovia, F. J., Hidalgo, G. I., Villasante, J., Ramis, X., and Almajano, M. P. (2018). Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation, Molecules, Vol. 23, No. 10, 2421. doi:10.3390/molecules23102421.
  16. Pahua-Ramos, M. E., Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernández-Navarro, M. D., Garduño-Siciliano, L., Necoechea-Mondragón, H., and Hernández-Ortega, M. (2012). Hypolipidemic Effect of Avocado (Persea americana Mill) Seed in a Hypercholesterolemic Mouse Model, Plant Foods for Human Nutrition, Vol. 67, No. 1, 10–16. doi:10.1007/s11130-012-0280-6.
  17. Harborne, J. . (1998). Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. 5th Edition, Chapman and Hall Ltd, London.
  18. Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity, LWT - Food Science and Technology, Vol. 28, No. 1, 25–30. doi:10.1016/S0023-6438(95)80008-5.
  19. Harera, C. F., Maysarah, H., Kemala, P., Idroes, G. M., Maulydia, N. B., Patwekar, M., and Idroes, R. (2024). Geothermal Flora and AgNPs Synergy: A Study on the Efficacy of Lantana camara and Acrostichum aureum-Infused Hand Sanitizers, Grimsa Journal of Science Engineering and Technology, Vol. 2, Nos. 2 SE-Articles, 52–59. doi:10.61975/gjset.v2i2.38.
  20. Osipova, V., Gracheva, Y., Polovinkina, M., Burmistrova, D., and Berberova, N. (2022). Antioxidant Activity and Cytotoxicity of Aromatic Oligosulfides, Molecules, Vol. 27, No. 12, 3961. doi:10.3390/molecules27123961.
  21. Maulydia, N. B., Khairan, K., Tallei, T. E., Salaswati, S., Musdalifah, A., Nabila, F. F., and Idroes, R. (2024). Exploring the Medicinal Potential of Blumea balsamifera: Insights from Molecular Docking and Molecular Dynamics Simulations Analyses, Malacca Pharmaceutics, Vol. 2, No. 1, 33–40. doi:10.60084/mp.v2i1.168.
  22. Kian, M., Hosseini, E., Abdizadeh, T., Langaee, T., Khajouei, A., and Ghasemi, S. (2022). Molecular Docking and Mouse Modeling Suggest CMKLR1 and INSR As Targets for Improving PCOS Phenotypes by Minocycline, EXCLI Journal, Vol. 21, 400–414. doi:10.17179/excli2021-4534.
  23. Pires, D. E. V., Blundell, T. L., and Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures, Journal of Medicinal Chemistry, Vol. 58, No. 9, 4066–4072. doi:10.1021/acs.jmedchem.5b00104.
  24. Maulydia, N. B., Khairan, K., and Noviandy, T. R. (2023). Prediction of Pharmacokinetic Parameters from Ethanolic Extract Mane Leaves (Vitex pinnata L.) in Geothermal Manifestation of Seulawah Agam Ie-Seu’um, Aceh, Malacca Pharmaceutics, Vol. 1, No. 1, 16–21. doi:10.60084/mp.v1i1.33.
  25. Aysu, T., and Durak, H. (2015). Assessment of Avocado Seeds (Persea americana) to Produce Bio-Oil through Supercritical Liquefaction, Biofuels, Bioproducts and Biorefining, Vol. 9, No. 3, 231–257. doi:10.1002/bbb.1535.
  26. Mooradian, A. D. (1993). Antioxidant Properties of Steroids, The Journal of Steroid Biochemistry and Molecular Biology, Vol. 45, No. 6, 509–511. doi:10.1016/0960-0760(93)90166-T.
  27. KO, O., JN, O., and HC, O. (2018). Pharmacological Potentials, Characterization and Fatty Acids Profile of Persea americana Mill. (Avocardo) Seed Oil Using Gas Chromatography-Mass Spectroscopy, Biochemistry & Analytical Biochemistry, Vol. 07, No. 04. doi:10.4172/2161-1009.1000361.
  28. Mishra, R., and Bisht, S. S. (2011). Antioxidants and Their Characterization, J. Pharm. Res, Vol. 4, No. 8, 2744–2746.
  29. Paniagua-Pérez, R., Madrigal-Bujaidar, E., Reyes-Cadena, S., Álvarez-González, I., Sánchez-Chapul, L., Pérez-Gallaga, J., Hernández, N., Flores-Mondragón, G., and Velasco, O. (2008). Cell Protection Induced by Beta-Sitosterol: Inhibition of Genotoxic Damage, Stimulation of Lymphocyte Production, and Determination of Its Antioxidant Capacity, Archives of Toxicology, Vol. 82, No. 9, 615–622. doi:10.1007/s00204-007-0277-3.
  30. Bansal, A. B., and Cassagnol, M. (2024). HMG-CoA Reductase Inhibitors, In: StatPearls, StatPearls Publishing, Treasure Island (FL).
  31. Mazhar, F., and Haider, N. (2016). Proprotein Convertase Subtilisin/Kexin Type 9 Enzyme Inhibitors: An Emerging New Therapeutic Option for the Treatment of Dyslipidemia, Journal of Pharmacology and Pharmacotherapeutics, Vol. 7, No. 4, 190–193. doi:10.4103/0976-500X.195906.
  32. Pinkosky, S. L., Groot, P. H. E., Lalwani, N. D., and Steinberg, G. R. (2017). Targeting ATP-Citrate Lyase in Hyperlipidemia and Metabolic Disorders, Trends in Molecular Medicine, Vol. 23, No. 11, 1047–1063. doi:10.1016/j.molmed.2017.09.001.
  33. Razafindrakoto, Z. R., Tombozara, N., Ramanitrahasimbola, D., Andrianjara, C., Zhao, M., Marchioni, E., Rakotondramanana, D. A., and Julien David, D. (2024). In Silico ADMET and Anti-Inflammatory Profiles of the Stigmast-4-En-3-One and Isolation of Isovanillin As the Antioxidant Principle of Imperata cylindrica (L.) P. Beauv, Natural Product Research, 1–8. doi:10.1080/14786419.2024.2305649.
  34. Mahnashi, M. H., and Alshehri, O. M. (2022). Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch, Biomolecules, Vol. 12, No. 10, 1430. doi:10.3390/biom12101430.
  35. Soledad, C.-P. T., Paola, H.-C., Carlos Enrique, O.-V., Israel, R.-L. I., GuadalupeVirginia, N.-M., and Raúl, Á.-S. (2021). Avocado Seeds (Persea americana cv. Criollo Sp.): Lipophilic Compounds Profile and Biological Activities, Saudi Journal of Biological Sciences, Vol. 28, No. 6, 3384–3390. doi:10.1016/j.sjbs.2021.02.087.
  36. Nazir, N., Zahoor, M., Uddin, F., and Nisar, M. (2021). Chemical Composition, In Vitro Antioxidant, Anticholinesterase, and Antidiabetic Potential of Essential Oil of Elaeagnus umbellata Thunb, BMC Complementary Medicine and Therapies, Vol. 21, No. 1, 73. doi:10.1186/s12906-021-03228-y.
  37. Kiokias, S., Proestos, C., and Oreopoulou, V. (2018). Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes, Antioxidants, Vol. 7, No. 10, 133. doi:10.3390/antiox7100133.
  38. Klyushova, L. S., Perepechaeva, M. L., and Grishanova, A. Y. (2022). The Role of CYP3A in Health and Disease, Biomedicines, Vol. 10, No. 11, 2686. doi:10.3390/biomedicines10112686.
  39. Sanguinetti, M. C., and Tristani-Firouzi, M. (2006). hERG Potassium Channels and Cardiac Arrhythmia, Nature, Vol. 440, No. 7083, 463–469. doi:10.1038/nature04710.

Downloads

Published

2024-12-04

How to Cite

Nurbaiti, N., Fitri, Y., Fitriani, F., Humaira, W., & Triwibowo, C. (2024). Phytochemical Composition and Antioxidant Properties of Avocado (Persea americana) Seed Extract from Aceh, Indonesia: Implications for Antihyperlipidemic Use in Postmenopausal Women. Malacca Pharmaceutics, 3(1), 1–9. https://doi.org/10.60084/mp.v3i1.228

Issue

Section

Article